Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311764

RESUMO

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Assuntos
Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Piramidais/metabolismo , Vasodilatação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
2.
J Biol Chem ; 290(26): 16168-76, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25931121

RESUMO

Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser(423)-Pro(542)) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.


Assuntos
Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/metabolismo , Animais , Encéfalo/metabolismo , Canais de Cálcio Tipo T/genética , Humanos , Neurônios/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Wistar
3.
J Neurosci ; 35(1): 64-73, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568103

RESUMO

Slow waves of non-REM sleep are suggested to play a role in shaping synaptic connectivity to consolidate recently acquired memories and/or restore synaptic homeostasis. During sleep slow waves, both GABAergic neurons of the nucleus reticularis thalami (NRT) and thalamocortical (TC) neurons discharge high-frequency bursts of action potentials mediated by low-threshold calcium spikes due to T-type Ca(2+) channel activation. Although such activity of the intrathalamic network characterized by high-frequency firing and calcium influx is highly suited to modify synaptic efficacy, very little is still known about its consequences on intrathalamic synapse strength. Combining in vitro electrophysiological recordings and calcium imaging, here we show that the inhibitory GABAergic synapses between NRT and TC neurons of the rat somatosensory nucleus develop a long-term depression (I-LTD) when challenged by a stimulation paradigm that mimics the thalamic network activity occurring during sleep slow waves. The mechanism underlying this plasticity presents unique features as it is both heterosynaptic and homosynaptic in nature and requires Ca(2+) entry selectively through T-type Ca(2+) channels and activation of the Ca(2+)-activated phosphatase, calcineurin. We propose that during slow-wave sleep the tight functional coupling between GABAA receptors, calcineurin, and T-type Ca(2+) channels will elicit LTD of the activated GABAergic synapses when coupled with concomitant activation of metabotropic glutamate receptors postsynaptic to cortical afferences. This I-LTD may be a key element involved in the reshaping of the somatosensory information pathway during sleep.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Neurônios GABAérgicos/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sono/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Ratos , Ratos Wistar
4.
PLoS One ; 8(8): e72275, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991078

RESUMO

The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca(2+) channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca(2+) channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca(2+) responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca(2+) accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca(2+) influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca(2+) channels play a crucial role in the action potential triggered Ca(2+) influx suggesting that this Ca(2+) influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels' availability. We conclude that by mediating Ca(2+) dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Dendritos/metabolismo , Neurônios/metabolismo , Tálamo/citologia , Animais , Neurônios/fisiologia , Ratos , Ratos Wistar , Tálamo/metabolismo , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...